Canberra College

Workshop

Helping your child with study and assignments.
Section 3

____ I learn best by interacting with others.
____ I enjoy informal chat and serious discussion.
____ The more the merrier.
____ I often serve as a leader among peers and colleagues.
____ I value relationships more than ideas or accomplishments.
____ Study groups are very productive for me.
____ I am a team player.
____ Friends are important to me.
____ I belong to more than three clubs or organizations.
____ I dislike working alone.

____ TOTAL for Section 3

Section 4

____ I learn by doing.
____ I enjoy making things with my hands.
____ Sports are a part of my life.
____ I use gestures and nonverbal cues when I communicate.
____ Demonstrating is better than explaining.
____ I love to dance.
____ I like working with tools.
____ Inactivity can make me more tired than being very busy.
____ Hands-on activities are fun.
____ I live an active lifestyle.

____ TOTAL for Section 4
Section 5

___ Foreign languages interest me.

___ I enjoy reading books, magazines, and websites.

___ I keep a journal.

___ Word puzzles like crosswords or jumbles are enjoyable.

___ Taking notes helps me remember and understand.

___ I faithfully contact friends through letters and/or e-mail.

___ It is easy for me to explain my ideas to others.

___ I write for pleasure.

___ Puns, anagrams, and spoonerisms are fun.

___ I enjoy public speaking and participating in debates.

___ TOTAL for Section 5

Section 6

___ My attitude affects how I learn.

___ I like to be involved in causes that help others.

___ I am keenly aware of my moral beliefs.

___ I learn best when I have an emotional attachment to the subject.

___ Fairness is important to me.

___ Social justice issues interest me.

___ Working alone can be just as productive as working in a group.

___ I need to know why I should do something before I agree to do it.

___ When I believe in something, I give more effort toward it.

___ I am willing to protest or sign a petition to right a wrong.

___ TOTAL for Section 6
Section 7

- I can visualize ideas in my mind.
- Rearranging a room and redecorating are fun for me.
- I enjoy creating my own works of art.
- I remember better when using graphic organizers.
- I enjoy all kinds of entertainment media.
- Charts, graphs, and tables help me interpret data.
- A music video can make me more interested in a song.
- I can recall things as mental pictures.
- I am good at reading maps and blueprints.
- Three-dimensional puzzles are fun.

TOTAL for Section 7

PART III

Plot your scores on the following bar graph:

<table>
<thead>
<tr>
<th></th>
<th>Sec. 1</th>
<th>Sec. 2</th>
<th>Sec. 3</th>
<th>Sec. 4</th>
<th>Sec. 5</th>
<th>Sec. 6</th>
<th>Sec. 7</th>
</tr>
</thead>
<tbody>
<tr>
<td>10</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>9</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>8</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Section 1 suggests your musical strength.

Section 2 indicates your logical/mathematical strength.

Section 3 shows your interpersonal strength.

Section 4 suggests your kinesthetic strength.

Section 5 indicates your linguistic/verbal strength.

Section 6 reflects your intrapersonal strength.

Section 7 suggests your visual/spatial strength.

You can find a detailed explanation of each of these intelligence types on p. 5–6.

Tips for Studying

Use the following ideas to help you study making best use of your intelligences strengths.

<table>
<thead>
<tr>
<th>Intelligence Type</th>
<th>Study Strategies</th>
</tr>
</thead>
</table>
| **Musical Learners** | Reading your notes into a digital recorder and playing them back as you drive or exercise.
 | Explaining concepts aloud to/with others.
 | Creating mnemonic (memory aids) rhymes or songs |
| **Logical Learners** | Mixing up study locations and styles (eg alone or with others)
 | Making charts and graphs
 | Reverse engineering an outline from a text |
| **Interpersonal Learners** | Studying with people around eg in the kitchen, a coffee shop, library.
 | Taking social breaks between each study session or topic.
 | Review with someone else
 | Group projects |
| **Kinaesthetic Learners** | Typing or writing out your notes as you read
 | Walking while reading
 | Keeping your hands busy with a stress ball, yo-yo, or other small object |
| **Linguistic Learners** | Read alone, but review with a partner or group
 | Create flash cards |
 | Write mnemonics (memory aids) |
| **Intrapersonal Learners** | Having a quiet, cosy workspace
 | Keeping separate, attractive journals for each subject |
| **Visual Learners** | Mind Mapping
 | Posting important points and images on the walls of your study area
 | Making drawings (literal or metaphorical) of key concepts
 | Keeping your study area bare and well-organised to minimize visual distractions |
Shared learning

Focused instruction
Guided instruction
Independent

- Direct explanations
- Modelling
- Think aloud
- Worked examples

(Shay & Sulur 2006)

‘Working the text’

- Underline the major points
- Circle keywords or phrases that are confusing or unknown to you
- Write margin notes restating the author’s/writer’s ideas
What's Wrong With the Teenage Mind?

Edited from the article by ALISON GOPNIK
http://online.wsj.com/article/SB1000142405297020380650457718113514865658984.html

Children today reach puberty earlier and adulthood later. The result: A lot of teenage weirdness. Alison Gopnik on how we might adjust adolescence.

"What was he thinking?" It’s the familiar cry of bewildered parents trying to understand why their teenagers act the way they do.

How does the boy who can thoughtfully explain the reasons never to drink and drive end up in a drunken crash? Why does the girl who knows all about birth control find herself pregnant by a boy she doesn’t even like? What happened to the gifted, imaginative child who excelled through high school but then dropped out of college, drifted from job to job and now lives in his parents’ basement? If you think of the teenage brain as a car, today’s adolescents acquire an accelerator a long time before they can steer and brake.

Adolescence has always been troubled, but for reasons that are somewhat mysterious, puberty is now kicking in at an earlier and earlier age. A leading theory points to changes in energy balance as children eat more and move less. At the same time children take on adult roles later and later.

The crucial new idea is that there are two different neural and psychological systems that interact to turn children into adults. Over the past two centuries, and even more over the past generation, the developmental timing of these two systems has changed. That, in turn, has profoundly changed adolescence and produced new kinds of adolescent woe.

The first of these systems has to do with emotion and motivation. It is very closely linked to the biological and chemical changes of puberty and involves the areas of the brain that respond to rewards. This is the system that turns placid 10-year-olds into restless, exuberant, emotionally intense teenagers, desperate to attain every goal, fulfill every desire and experience every sensation. Later, it turns them back into relatively placid adults.

Recent studies in the neuroscientist B.J. Casey’s lab at Cornell University suggest that adolescents aren’t reckless because they underestimate risks, but because they overestimate rewards—or, rather, find rewards more rewarding than adults do. The reward centers of the adolescent brain are much more active than those of either children or adults.

What teenagers want most of all are social rewards, especially the respect of their peers. In a recent study by the developmental psychologist Laurence Steinberg at Temple University, teenagers did a simulated high-risk driving task while they were lying in an fMRI brain-imaging machine. The reward system of their brains lighted up much more when they thought another teenager was watching what they did—anc they took more risks.

Becoming an adult means leaving the world of your parents and starting to make your way toward the future that you will share with your peers. Puberty not only turns on the motivational and emotional system with new force, it also turns it away from the family and toward the world of equals.

The second crucial system in our brains has to do with control; it channels and harnesses all that seething energy. In particular, the prefrontal cortex reaches out to guide other parts of the brain, including the parts that govern motivation and emotion. This is the system that inhibits impulses and guides decision-making, that encourages long-term planning and delays gratification.

This control system depends much more on learning. It becomes increasingly effective throughout childhood and continues to develop during adolescence and adulthood, as we gain more experience. You come to make better decisions by making not-so-good decisions and then correcting them. You get to be a good planner by making plans, implementing them and seeing the results again and again. Expertise comes with experience.

In the past, to become a good gatherer or hunter, cook or caregiver, you would actually practice gathering, hunting, cooking and taking care of children all through middle childhood and early adolescence—tuning up just the prefrontal wiring you’d need as an adult. In contemporary life, the relationship between these two systems has changed dramatically. Puberty arrives earlier, and the motivational system kicks in earlier too.

At the same time, contemporary children have very little experience with the kinds of tasks that they’ll have to perform as grown-ups. Children have increasingly little chance to practice even basic skills like cooking and caregiving. Contemporary adolescents and pre-adolescents often don’t do much of anything except go to school.
The experience of trying to achieve a real goal in real time in the real world is increasingly delayed, and the growth of the control system depends on just those experiences. The pediatrician and developmental psychologist Ronald Dahl at the University of California, Berkeley, has a good metaphor for the result: Today's adolescents develop an accelerator a long time before they can steer and brake.

Everett Collection: James Dean in the 1955 film 'Rebel Without A Cause'.

This doesn't mean that adolescents are stupider than they used to be. In many ways, they are much smarter. An ever longer protected period of immaturity and dependence—a childhood that extends through college—means that young humans can learn more than ever before. There is strong evidence that IQ has increased dramatically as more children spend more time in school, and there is even some evidence that higher IQ is correlated with delayed frontal lobe development.

But there are different ways of being smart. Knowing physics and chemistry is no help with a soufflé. Wide-ranging, flexible and broad learning, the kind we encourage in high-school and college, may actually be in tension with the ability to develop finely-honed, controlled, focused expertise in a particular skill, the kind of learning that once routinely took place in human societies. For most of our history, children have started their internships when they were seven, not twenty-seven.

This new explanation also illustrates two really important and often overlooked facts about the mind and brain. First, experience shapes the brain. People often think that if some ability is located in a particular part of the brain, that must mean that it's "hard-wired" and inflexible. But, in fact, the brain is so powerful precisely because it is so sensitive to experience. It's as true to say that our experience of controlling our impulses make the prefrontal cortex develop, as it is to say that prefrontal development makes us better at controlling our impulses. Our social and cultural life shapes our biology.

Second, development plays a crucial role in explaining human nature. The old "evolutionary psychology" picture was that genes were directly responsible for some particular pattern of adult behavior—a "module." In fact, there is more and more evidence that genes are just the first step in complex developmental sequences, cascades of interactions between organism and environment, and that those developmental processes shape the adult brain. Even small changes in developmental timing can lead to big changes in who we become.

Brain research is often taken to mean that adolescents are really just defective adults—grown-ups with a missing part. But the new view of the adolescent brain isn't that the prefrontal lobes just fail to show up; it's that they aren't properly instructed and exercised.

Simply increasing the driving age by a year or two doesn't have much influence on the accident rate, for example. What does make a difference is having a graduated system in which teenagers slowly acquire both more skill and more freedom—a driving apprenticeship.

Instead of simply giving adolescents more and more school experiences—those extra hours of after-school classes and homework—we could try to arrange more opportunities for apprenticeship. "Take your child to work" could become a routine practice rather than a single-day annual event, and college students could spend more time watching and helping scientists and scholars at work rather than just listening to their lectures. Summer enrichment activities like camp and travel might be usefully alternated with summer jobs, with real responsibilities.

The good news, in short, is that we don't have to just accept the developmental patterns of adolescent brains. We can actually shape and change them.

—Ms. Gopnik is a professor of psychology at the University of California, Berkeley, and the author, most recently, of "The Philosophical Baby: What Children's Minds Tell Us About Truth, Love and the Meaning of Life." Adapted from an essay that she wrote for www.edge.org, in response to the website's 2012 annual question: "What is your favorite deep, elegant or beautiful explanation?"
<table>
<thead>
<tr>
<th>Title</th>
<th>Author</th>
</tr>
</thead>
<tbody>
<tr>
<td>Reference</td>
<td></td>
</tr>
<tr>
<td>What is the main idea or contention of the item?</td>
<td></td>
</tr>
<tr>
<td>List and explain some of the sub topics or pertinent ideas</td>
<td></td>
</tr>
<tr>
<td>How does the item support its views?</td>
<td></td>
</tr>
</tbody>
</table>
What flaws do you find in the item’s reasoning, understanding or use of evidence?

What do you agree with and why?

What do you disagree with and why?

What have you learnt from this item?

What else would you like to know or explore after reading/hearing/listening to it?
1. Let Your Writing Rest for a Few Hours or Days

The more distance you put between yourself and your writing, the easier it is to make improvements and find mistakes.

When possible, let important writing sit for a few days, or even hours. Find another activity that will help you distance yourself from the writing. You might want to take a jog, wash the dishes, or take your dog to the park. Do something that clears your mind. When you pick up the material again, it’s almost like proofing someone else’s work.

2. Copy your text into a different editor or change the font.

One of the biggest reasons that writing errors make it from draft to sent copy is because your brain is so familiar with the text that it literally auto-corrects the mistakes it sees — making them almost invisible to you. Unfortunately, the longer you work on a text, the more likely this is to happen. This trick is to help your brain perceive your writing as something fresh so that it can more easily spot oddities.

3. Read your text backward.

If you don’t have time to step away from your writing for anywhere from few hours to a day or more, try this hack. Read the sentences in backward order. Instead of reading from top to bottom, read bottom to top. This will add novelty to the sentences, making it easier to find errors.

4. Read your text out loud.

Even if you’re just whispering away at your desk, reading aloud is a great way to find and spot mistakes, especially missing punctuation or repeated words. As an added bonus, you will likely hear when something doesn’t flow properly or sounds awkward. While not necessarily incorrect, these phrases can be re-worded for better clarity in communication.
How to succeed in Science at Canberra College

Preparation
1. Turn off phones
2. Have all your equipment
3. Read and be familiar with work before class
4. Good nutrition and hydration
5. Good sleep and regular exercise
6. Have your bag packed the night before

Organisation
1. Plan your own work program.
2. Work/study every day for 2-3 hours outside class.
3. Have a planner for the term on your wall near your desk and use it
4. Know when work is set and when it is due. Put it on the planner.
5. Put all appointments, social events, homework and assignment times, sporting and work commitments on your planner and colour-code them.
6. Get out of bed in plenty of time to arrive for class on time (use an alarm).
7. Keep up with your absences.

Review – everyday
1. Memorise new content (new words and their meaning, formulae, diagrams etc.).
2. Use look cover write say check X5 as this works absolutely! (ask Judy for details)
3. Connect ideas to gain understanding (concept maps, practice problems, ask questions, connect new work with old, examine diagrams and pictures, read and re-read text etc.).
4. Do the set homework.

Assignments
1. Start on the day it is given and finish early.
2. Hand in drafts.
3. Ask questions.
4. Read assignment sheet carefully.
5. Examine and follow rubric.
6. Use learner guides.
7. Research thoroughly and deeply.
8. Use authoritative references.

Tests
1. If above is followed, test yourself to diagnose where you need more work.
2. Revise all content before tests.
3. Read each test question carefully and underline key words.
4. Answer the question that is asked.
5. Think and plan your answer before you write anything. Write completely and precisely.
6. Relax.
Success in Science at college – a guide for parents.

1. Work space at home – must have desk, computer and natural light
2. Work 2-3 hours every day on review, homework and assignments (some of this can be in spares at college. Make sure they have a break of 5 minutes per half hour where they get up and walk around.
3. Music can be distracting – music without words is better.
4. Turn phones, and facebook (etc.) off while studying
5. Science teachers provide a work program for the term. Students need to use this to plan their work and to know what is being done when they are sick. Skype is a good tool if they are sick.
6. Read ahead and write a series of questions to ask so that they are prepared for class the next day – always better to teach yourself – physics do flip classroom.
7. Spend time on most subjects on most days or the subjects they had that day.
8. Start the assignment the day they get it and do some each day – try to finish well before due date so printing problems can be ironed out.
9. Read drafts of their work for sense and flow.
10. Assist students with work but avoid doing it for them.
11. Nutritious food, regular exercise, good sleep and good hydration are vital for brain function.
12. Organise a planner on the wall where they work so that they can plan assignments, study, social occasions, work and sport. Most things will fit. Colour-code the different activities.
13. Make sure they have what they need and are bringing it to school.
14. Provide support and encouragement and praise success; show them how to learn from failure.
15. Try not to plan holidays in term time.
16. Keep outside work commitments to **less than** 10 hours per week and make sure they are organised to cover their study time.